Aircraft Fabric Covering

History of Fabric Covering

Fabric-covered aircraft play an important role in the history of aviation. The famous Wright Flyer utilized a fabric-covered wood frame in its design, and fabric covering continued to be used by many aircraft designers and builders during the early decades of production aircraft. The use of fabric covering on an aircraft offers one primary advantage: light weight. In contrast, fabric coverings have two disadvantages: flammability and lack of durability.

Finely woven organic fabrics, such as Irish linen and cotton, were the original fabrics used for covering airframes, but their tendency to sag left the aircraft structure exposed to the elements. To counter this problem, builders began coating the fabrics with oils and varnishes. In 1916, a mixture of cellulose dissolved in nitric acid, called nitrate dope, came into use as an aircraft fabric coating. Nitrate dope protected the fabric, adhered to it well, and tautened it over the airframe. It also gave the fabric a smooth, durable finish when dried. The major drawback to nitrate dope was its extreme flammability.

To address the flammability issue, aircraft designers tried a preparation of cellulose dissolved in butyric acid called butyrate dope. This mixture protected the fabric from dirt and moisture, but it did not adhere as well to the fabric as nitrate dope. Eventually, a system combining the two dope coatings was developed. First, the fabric was coated with nitrate dope for its adhesion and protective qualities. Then, subsequent coats of butyrate dope were added. Since the butyrate dope coatings reduced the overall flammability of the fabric covering, this system became the standard fabric treatment system.


The second problem, lack of durability, stems from the eventual deterioration of fabric from exposure to the elements that results in a limited service life. Although the mixture of nitrate dope and butyrate dope kept out dirt and water, solving some of the degradation issue, it did not address deterioration caused by ultraviolet (UV) radiation from the sun. Ultraviolet radiation passed through the dope and degraded not only the fabric, but also the aircraft structure underneath. Attempts to paint the coated fabric proved unsuccessful, because paint does not adhere well to nitrate dope. Eventually, aluminum solids were added to the butyrate coatings. This mixture reflected the sun’s rays, prevented harmful UV rays from penetrating the dope, and protected the fabric, as well as the aircraft structure.

Regardless of treatments, organic fabrics have a limited lifespan; cotton or linen covering on an actively flown aircraft lasts only about 5-10 years. Furthermore, aircraft cotton has not been available for over 25 years. As the aviation industry developed more powerful engines and more aerodynamic aircraft structures, aluminum became the material of choice. Its use in engines, aircraft frames, and coverings revolutionized aviation. As a covering, aluminum protected the aircraft structure from the elements, was durable, and was not flammable.

Although aluminum and composite aircraft dominate modern aviation, advances in fabric coverings continue to be made because gliders, home-built, and light sport aircraft, as well as some standard and utility certificated aircraft, are still produced with fabric coverings. [Figure] The nitrate/butyrate dope process works well, but does not mitigate the short lifespan of organic fabrics. It was not until the introduction of polyester fabric as an aircraft covering in the 1950s that the problem of the limited lifespan of fabric covering was solved. The transition to polyester fabric had some problems because the nitrate and butyrate dope coating process is not as suitable for polyester as it is for organic fabrics. Upon initial application of the dopes to polyester, good adhesion and protection occurred; as the dopes dried, they would eventually separate from the fabric. In other words, the fabric outlasted the coating.

Aircraft Fabric Covering
Examples of aircraft produced using fabric skin

Eventually, dope additives were developed that minimized the separation problem. For example, plasticizers keep the dried dope flexible and nontautening dope formulas eliminate separation of the coatings from the fabric. Properly protected and coated, polyester lasts indefinitely and is stronger than cotton or linen. Today, polyester fabric coverings are the standard and use of cotton and linen on United States certificated aircraft has ceased. In fact, the long staple cotton from which grade-A cotton aircraft fabric is made is no longer produced in this country.


Re-covering existing fabric aircraft is an accepted maintenance procedure. Not all aircraft covering systems include the use of dope coating processes. Modern aircraft covering systems that include the use of nondope fabric treatments show no signs of deterioration even after decades of service.
Previous Post Next Post