Engine Fire Detection Systems
Several different types of fire detection system are installed in aircraft to detect engine fires. Two common types used are spot detectors and continuously loop systems. Spot detector systems use individual sensors to monitor a fire zone. Examples of spot detector systems are the thermal switch system, the thermocouple system, the optical fire detection system, and the pneumatic-based thermal fire detection system. Continuous loop systems are typically installed on transport type aircraft and provide more complete fire detection coverage by using several loop type of sensors.
If the temperature rises above a set value in any one section of the circuit, the thermal switch closes, completing the light circuit to indicate a fire or overheat condition.
No set number of thermal switches is required; the exact number usually is determined by the aircraft manufacturer. On some installations, all the thermal detectors are connected to one light; others may have a separate thermal switch for each indicator light.
Some warning lights are push-to-test lights. The bulb is tested by pushing it in to check an auxiliary test circuit. The circuit shown in Figure 1 includes a test relay. With the relay contact in the position shown, there are two possible paths for current flow from the switches to the light. This is an additional safety feature. Energizing the test relay completes a series circuit and checks all the wiring and the light bulb.
Also included in the circuit shown in Figure 1 is a dimming relay. By energizing the dimming relay, the circuit is altered to include a resistor in series with the light. In some installations, several circuits are wired through the dimming relay, and all the warning lights may be dimmed at the same time.
Thermal Switch System
A number of detectors or sensing devices are available. Many older model aircraft still operating have some type of thermal switch system or thermocouple system. A thermal switch system has one or more lights energized by the aircraft power system and thermal switches that control operation of the light(s). These thermal switches are heat-sensitive units that complete electrical circuits at a certain temperature. They are connected in parallel with each other, but in series with the indicator lights [Figure 1].
No set number of thermal switches is required; the exact number usually is determined by the aircraft manufacturer. On some installations, all the thermal detectors are connected to one light; others may have a separate thermal switch for each indicator light.
Some warning lights are push-to-test lights. The bulb is tested by pushing it in to check an auxiliary test circuit. The circuit shown in Figure 1 includes a test relay. With the relay contact in the position shown, there are two possible paths for current flow from the switches to the light. This is an additional safety feature. Energizing the test relay completes a series circuit and checks all the wiring and the light bulb.
Also included in the circuit shown in Figure 1 is a dimming relay. By energizing the dimming relay, the circuit is altered to include a resistor in series with the light. In some installations, several circuits are wired through the dimming relay, and all the warning lights may be dimmed at the same time.
Thermocouple Systems
The thermocouple fire warning system operates on an entirely different principle than the thermal switch system. A thermocouple depends on the rate of temperature rise and does not give a warning when an engine slowly overheats or a short circuit develops. The system consists of a relay box, warning lights, and thermocouples. The wiring system of these units may be divided into the following circuits: (1) the detector circuit, (2) the alarm circuit, and (3) the test circuit. These circuits are shown in Figure 2.
The relay box contains two relays, the sensitive relay and the slave relay, and the thermal test unit. Such a box may contain from one to eight identical circuits, depending on the number of potential fire zones. The relays control the warning lights. In turn, the thermocouples control the operation of the relays. The circuit consists of several thermocouples in series with each other and with the sensitive relay.
The thermocouple is constructed of two dissimilar metals, such as chromel and constantan. The point where these metals are joined and exposed to the heat of a fire is called a hot junction. There is also a reference junction enclosed in a dead air space between two insulation blocks. A metal cage surrounds the thermocouple to give mechanical protection without hindering the free movement of air to the hot junction.
If the temperature rises rapidly, the thermocouple produces a voltage because of the temperature difference between the reference junction and the hot junction. If both junctions are heated at the same rate, no voltage results. In the engine compartment, there is a normal, gradual rise in temperature from engine operation; because it is gradual, both junctions heat at the same rate and no warning signal is given.
If there is a fire, however, the hot junction heats more rapidly than the reference junction. The ensuing voltage causes a current to flow within the detector circuit. Any time the current is greater than 4 milliamperes (0.004 ampere), the sensitive relay closes. This completes a circuit from the aircraft power system to the coil of the slave relay. The slave relay then closes and completes the circuit to the warning light to give a visual fire warning.
The total number of thermocouples used in individual detector circuits depends on the size of the fire zones and the total circuit resistance, which usually does not exceed 5 ohms. As shown in Figure 2, the circuit has two resistors. The resistor connected across the slave relay terminals absorbs the coil’s self-induced voltage to prevent arcing across the points of the sensitive relay. The contacts of the sensitive relay are so fragile that they burn or weld if arcing is permitted.
When the sensitive relay opens, the circuit to the slave relay is interrupted and the magnetic field around its coil collapses. When this happens, the coil gets a voltage through self-induction, but with the resistor across the coil terminals, there is a path for any current flow as a result of this voltage. Thus, arcing at the sensitive relay contacts is eliminated.
Optical Fire Detection Systems
Optical sensors, often referred to as “flame detectors,” are designed to alarm when they detect the presence of prominent, specific radiation emissions from hydrocarbon flames. The two types of optical sensors available are infrared (IR) and ultraviolet, based on the specific emission wave lengths they are designed to detect.
Infrared Optical Fire Protection
IR-based optical flame detectors are used primarily on light turboprop aircraft and helicopter engines. These sensors have proven to be very dependable and economical for the relatively benign environments of these applications.
Principle of Operation
Radiation emitted by the fire crosses the airspace between the fire and the detector and impinges on the detector front face and window. The window allows a broad spectrum of radiation to pass into the detector where it impinges on the face of the sensing device filter. The filter allows only radiation in a tight waveband centered around 4.3 micrometers in the IR to pass on to the radiation-sensitive surface of the sensing device. The radiation striking the sensing device minutely raises its temperature causing small thermoelectric voltages to be generated. These voltages are fed to an amplifier whose output is connected to various analytical electronic processing circuits. The processing electronics is tailored exactly to the time signature of all known hydrocarbon flame sources and ignores false alarm sources, such as incandescent lights and sunlight. Alarm sensitivity level is accurately controlled by a digital circuit. A typical warning system is illustrated in Figure 3.
Pneumatic Thermal Fire Detection
Pneumatic detectors are based on the principles of gas laws. The sensing element consists of a closed helium-filled tube connected at one end to a responder assembly. As the element is heated, the gas pressure inside the tube increases until the alarm threshold is reached. At this point, an internal switch closes and reports an alarm to the cockpit. The pneumatic detector integrity pressure switch opens and triggers the fault alarm if the pneumatic detector losses pressure, as in the case of a leak.
Continuous-Loop Detector Systems
Large commercial aircraft almost exclusively use continuous thermal sensing elements for powerplant protection, since these systems offer superior detection performance and coverage, and they have the proven ruggedness to survive in the harsh environment of modern turbofan engines.
A continuous-loop detector, or sensing system, permits more complete coverage of a fire hazard area than any of the spot-type temperature detectors. Continuous-loop systems are versions of the thermal switch system. They are overheat systems, heat-sensitive units that complete electrical circuits at a certain temperature. There is no rate-of-heatrise sensitivity in a continuous-loop system. Two widely used types of continuous-loop systems are the Kidde and the Fenwal systems. This text briefly discusses the Fenwall system, while the Kidde system is discussed more in-depth.
Fenwall Continuous-Loop System
The Fenwal system uses a slender inconel tube packed with thermally sensitive eutectic salt and a nickel wire center conductor. [Figure 4] Lengths of these sensing elements are connected in series to a control unit. The elements may be of equal or varying length and of the same or different temperature settings. The control unit, operating directly from the power source, impresses a small voltage on the sensing elements. When an overheat condition occurs at any point within the sensing element drops sharply, causing current to flow between the outer sheath and the center conductor. This current flow is sensed by the control unit, which produces a signal to actuate the output relay.
When the fire has been extinguished or the critical temperature lowered, the Fenwal system automatically returns to standby alert, ready to detect any subsequent fire or overheat condition. The Fenwal system may be wired to employ a “loop” circuit. In this case, should an open circuit occur, the system still signals fire or overheat. If multiple open circuits occur, only that section between breaks becomes inoperative.
Kidde Continuous-Loop System
In the Kidde continuous-loop system, two wires are imbedded in an inconel tube filled with a thermistor core material. [Figure 5] Two electrical conductors go through the length of the core. One conductor has a ground connection to the tube and the other conductor connects to the fire detection control unit.
As the temperature of the core increases, electrical resistance to ground decreases. The fire detection control unit monitors this resistance. If the resistance decreases to the overheat set point, an overheat indication occurs in the flight deck. Typically, a 10-second time delay is incorporated for the overheat indication. If the resistance decreases more to the fire set point, a fire warning occurs. When the fire or overheat condition is gone, the resistance of the core material increases to the reset point and the flight deck indications go away.
The rate of change of resistance identifies an electrical short or a fire. The resistance decreases more quickly with an electrical short than with a fire. In addition to fire and overheat detection, the Kidde continuous-loop system can supply nacelle temperature data to the airplane condition monitoring function of the Aircraft In-Flight Monitoring System (AIMS).
Sensing Element
The sensing element consists, essentially, of an infinite number of unit thermistors electrically in parallel along its length. The resistance of the sensing element is a function of the length heated, as well as the temperature-heating of less than the full length of element, which requires that portion to be heated to a higher temperature to achieve the same total resistance change. As a result, the system responds not to a fixed alarm temperature but to the sum of the resistances (in parallel) that reflects a nonarithmetic “average.” The sensing element may be routed close to nonhazardous hot spots that may have a normal temperature well above the overall alarm temperature, without danger of causing a false alarm. This feature permits the alarm point to be set close to the maximum general ambient temperature, giving greater sensitivity to a general overheat or fire without being subject to false alarms from localized nonhazardous hot spots.
Combination Fire and Overheat Warning
The analog signal from the thermistor sensing element permits the control circuits to be arranged to give a two-level response from the same sensing element loop. The first is an overheat warning at a temperature level below the fire warning, indicating a general engine compartment temperature rise, which could be caused by leakage of hot bleed air or combustion gas into the engine compartment. It could be an early warning of fire, and would alert the crew to appropriate action to reduce the engine compartment temperature. The second-level response would be at a level above that attainable by the leaking hot gas and would be the fire warning.
Temperature Trend Indication
The analog signal produced by the sensing element loop as its temperature changes can readily be converted to signals suitable for meter or cathode ray tube (CRT) display to indicate engine bay temperature increases from normal. A comparison of the readings from each loop system also provides a check on the condition of the fire detection system, because the two loops should normally read alike.
System Test
The integrity of the continuous-loop fire detection system may be tested by actuating a test switch in the flight deck, which switches one end of the sensing element loop from its control circuit to a test circuit, built into the control unit, that simulates the sensing element resistance change due to fire. [Figure 6] If the sensing element loop is unbroken, the resistance detected “seen” by the control circuit is now that of the simulated fire and so the alarm is signaled. This demonstrates, in addition to the continuity of the sensing element loop, the integrity of the alarm indicator circuit and the proper functioning of the control circuits. The thermistor properties of the sensing element remain unchanged for the life of the element (no chemical or physical changes take place on heating), so that it functions properly as long as it is electrically connected to the control unit.
Fault Indication
Provision can be made in the control unit to send a fault signal to activate a fault indicator whenever the short discriminator circuit detects a short in the sensing element loop. While this is a requirement in 14 CFR for transport category aircraft because such a short disables the fire detection system, it is offered as an option for other aircraft types in which it may not be a requirement.
Dual-Loop Systems
Dual-loop systems are, in essence, two complete basic fire detection systems with their output signals connected so that both must signal to result in a fire warning. This arrangement, called “AND” logic, results in greatly increased reliability against false fire warnings from any cause. Should one of the two loops be found inoperative at the preflight integrity test, a cockpit selector switch disconnects that loop and allows the signal from the other loop alone to activate the fire warning. Since the single operative loop meets all fire detector requirements, the aircraft can be safely dispatched and maintenance deferred to a more convenient time. However, should one of the two loops become inoperative in flight and a fire subsequently occur, the fire signaling loop activates a cockpit fault signal that alerts the flight crew to select single-loop operation to confirm the possible occurrence of fire.
Automatic Self-Interrogation
Dual-loop systems automatically perform the loop switching and decision-making function required of the flight crew upon appearance of the fault indication in the cockpit. Automatic self-interrogation eliminates the fault indication, and assures the immediate appearance of the fire indication should fire occur while at least one loop of the dual-loop system is operative. Should the control circuit from a single loop signal “fire,” the self-interrogation circuit automatically tests the functioning of the other loop. If it tests operative, the circuit suppresses the fire signal (because the operative loop would have signaled if a fire existed). If, however, the other loop tests inoperative, the circuit outputs a fire signal. The interrogation and decision takes place in milliseconds, so that no delay occurs if a fire actually exists.
Support Tube-Mounted Sensing Elements
When you want to mount the sensing elements on the engine, and in some cases, on the aircraft structure, the support tube-mounted element solves the problem of providing sufficient element support points, and greatly facilitates the removal and reinstallation of the sensing elements for engine or system maintenance.
Most modern installations use the support tube concept of mounting sensing elements for better maintainability as well as increased reliability. The sensing element is attached to a prebent stainless steel tube by closely spaced clamps and bushings, where it is supported from vibration damage and protected from pinching and excessive bending. The support tube-mounted elements can be furnished with either single- or dual-sensing elements.
Being prebent to the designed configuration assures its installation in the aircraft precisely in its designed location, where it has the necessary clearance to be free from the possibility of the elements chafing against engine or aircraft structure. The assembly requires only a few attachment points, and removal for engine maintenance is quick and easy. Should the assembly require repair or maintenance, it is easily replaced with another assembly, leaving the repair for the shop. A damaged sensing element is easily replaced in the assembly. The assembly is rugged, easy to handle, and unlikely to suffer damage during handling for installation or removal.
Fire Detection Control Unit (Fire Detection Card)
The control unit for the simplest type of system typically contains the necessary electronic resistance monitoring and alarm output circuits, housed in a hermetically sealed aluminum case and filled with a mounting bracket and circular electrical connector. For more sophisticated systems, control modules may be employed that contain removable control cards having circuitry for individual hazard areas, and/or unique functions. In the most advanced applications, the detection system circuitry controls all aircraft fire protection functions, including fire detection and extinguishing for engines, APUs, cargo bays, and bleed air systems.
Fire Zones
The powerplant installation has several designated fire zones: (1) the engine power section; (2) the engine accessory section; (3) except for reciprocating engines, any complete powerplant compartment in which no isolation is provided between the engine power section and the engine accessory section; (4) any APU compartment; (5) any fuel-burning heater and other combustion equipment installation; (6) the compressor and accessory sections of turbine engines; and (7) combustor, turbine, and tailpipe sections of turbine engine installations that contain lines or components carrying flammable fluids or gases. Figure 7 shows fire protection for a large turbo fan engine.
In addition to the engine and nacelle area zones, other areas on multiengine aircraft are provided with fire detection and protection systems. These areas include baggage compartments, lavatories, APU, combustion heater installations, and other hazardous areas. Discussion of fire protection for these areas is not included in this section, which is limited to engine fire protection.